当前位置:首页 » 玄幻小说 » 石墨烯科幻小说

石墨烯科幻小说

发布时间: 2023-04-29 02:53:36

Ⅰ 如今非常火的石墨烯,究竟是科技还是科幻

石墨烯作为一种新型的材料,绝对不是所谓的科幻。它存在巨大的使用场景和空间,只不过以现在生存水平和了解,可能还需要一段时间的研发和普及。

未来,对于石墨烯的用途会非常广泛,比如航天领域已经开始规划石墨烯材料做燃料罐了、石墨烯做的太空服也会非常科幻。

但是石墨烯距离真正的实际应用还有非常远的一段路。石墨烯的生产问题是其中最大的难题。其实石墨烯本身并不难生产,自然界有的是,我们现在有很多办法提取出石墨烯来,在淘宝上蠢袭,你一百多块钱就能买一斤石墨烯。但是这样的石墨烯买了也不能做上面说的那些事。你能买到的只是石墨烯粉末,真正的石墨烯薄膜是很贵的。就像钻石一样,越大的钻石越值钱,蜡烛燃烧产生的烟里就有大量的微型钻石,你从来都不会觉得蜡烛燃烧产生的烟会很贵。同样的,石墨烯粉末价格并不高,但要是做成很大面积的石墨烯薄膜,那就价值不菲了。

但是我国现在正在大力扶持和发展石墨烯的研发和相关产业,相信在现在的科技纯档锋水平下,距离石墨烯的应用也只是指日可到。

Ⅱ 扬起光帆!人类探测器瞄准下一个目标:半人马座比邻星

每年一度的“百年星舰研讨会(100-Year Starship Symposium)”总能吸引一大票人参加——其中既有货真价实的科学家和研究人员,也不乏夸夸其谈的空想家和业余爱好者。大家凑在一起兴致勃勃地讨论如何在100年内建造一艘星际飞船,实现人类航天器飞出太阳系, 探索 另一颗恒星的梦想。

为什么达成这一目标的时间要定在100年内?原因很简单——英国著名科幻小说家赫伯特·乔治·威尔斯的著作《登月第一人》于1901年出版,阿波罗11号飞船1969年成功登月,相隔还不到100年。随着航天喊穗 科技 的加速发展,人类没有理由不对未来报以更高的期望。

可惜每次大会的喧嚣落定之后,似乎并没有留下什么让人印象深刻的东西。与会者提出的方案要么天马行空,不着边际,要么模糊其词,闭棚渗银口不谈技术细节——这其实很好理解,毕竟人类速度最快的航天器“旅行者一号”经过 42年 的长途旅行,才飞到 271亿公里 之外。光跨越这段距离仅需 20个小时 ,而太阳系边缘的奥尔特云有 1光年 远,距离太阳最近的一颗恒星——半人马座比邻星离我们 4.2光年 ,以旅行者一号的“龟速”到达那里至少要花 16,700年

2015年的“百年星际飞船研讨会”在美国加州圣克拉拉举行。来自加州大学圣巴巴拉分校的宇宙学家 菲利普·鲁宾 (Philip Lubin)提出一个颇为大胆的计划——用有史以来最强大的激光器做动力,将只有一枚邮票大小的“纳米帆船”加速到光速的20%,这样只需20年就能飞到比邻星!

满面胡须的鲁宾是一位优秀的演说家,他描绘的宏伟蓝图很快吸引了众人的目光。更重要的是,鲁宾的设想 没有任何违背科学原理之处 ,虽然在工程学方面还面临重大挑战,许多技术细节还需要验证,但假以时日未尝不能实现。

“突破摄星”计划的原理非常简单—链宴—建造一个由大量高强度激光器组成的阵列,通过锁相(phase lock)装置汇聚为功率高达 100千兆瓦 的单波束。将激光束引导至等候在地球轨道上的重量不到 一克 的纳米飞船光帆上,利用光子产生的压力使飞船加速。短短几分钟之内飞船速度可达到每小时 1.6亿 公里,在 20年 之内就能抵达比邻星,再用搭载的传感器拍下比邻星附近行星的照片并传回地球。

光帆技术不仅可以帮助人类亲眼目睹系外行星的真容,还能大大缩小太阳系旅行的时空距离。20%光速的纳米飞船 一小时 之内就能到达火星,到冥王星仅需 一天 ,飞到星际空间只要 一周 就够了。相比之下,NASA探测器飞抵火星需要 9个月 ,新地平线号飞掠冥王星花了 9年 ,1977年升空的旅行者1号用了 15年 才突破日球层。即使宇宙飞船速度只提升到光速的2%,相比现在也是巨大的进步。

作为“突破摄星计划”的智囊团成员之一,菲利普·鲁宾教授今年66岁,步伐轻快,头发乌黑,外表看上去比实际年龄要年轻许多。

即便如此,年轻时的鲁宾也没想过自己会走上学术之路。他的父亲来自立陶宛,职业是一名邮递员,连高中都没有毕业,母亲出生于俄罗斯,一辈子从事的都是秘书之类的工作。出身于这样的移民家庭,考入常青藤名校似乎是难以想象的事情。但机缘巧合,鲁宾在洛杉矶一名学校辅导员的鼓励下报考了社区大学,并从那里转到加州大学伯克利分校,最终听从教授的建议考入哈佛大学研究生院。回首求学之路,鲁宾半开玩笑称自己就像一个傻瓜。

今天的鲁宾是一名宇宙学家,虽然本职工作是摆弄各种宇宙背景辐射测量设备,但学术兴趣颇为广泛。在一次防御小行星技术会议上,众人正兴致勃勃地讨论用激光摧毁威胁地球的近地天体,鲁宾却突发奇想,冒出激光推进飞船的念头。

鲁宾认为,人类空间推进技术的发展过于缓慢。今天在役的火箭大多数仍然靠液体燃料驱动,和二战期间的德国V2火箭没有本质区别。相比之下,现代计算机的运算速度比75年前提高了 数万亿 倍。NASA的SLS超重型火箭研发投入已经超过 120亿 美元,至今仍未准备就绪。如果航天技术的进步幅度能和信息技术相媲美,类似的重型火箭成本可能早就降低到 几分钱

要想制造价格如此低廉的宇宙飞船,传统的化学动力驱动明显力不从心,但恒星产生的光子却可以提供我们源源不绝的动力。在太空中遨游的航天器几乎没有任何阻力,只要 表面足够光滑,撞击它的光子就会产生微小的推力并使其加速 。如果用一束足够强的激光持续照射一艘飞船的“光帆”,就能使飞行器像大海中乘风破浪的帆船一样,速度在短时间内得到巨大提升,最终达到相对论速度——这就是“突破摄星”计划的关键技术之一“ 光帆推进技术 ”的原理。

“突破摄星”计划设想发射一艘“太空母舰”进入地球高空轨道,在那里部署大量“纳米飞船”。每个飞船由两部分组成—— 大小几厘米,重量仅几克的星芯片 (StarChip),以及一个展开面积 4米X4米的光帆 (Lightsail)。部署在地面上的激光阵列将光束聚焦到光帆上,每面光帆接受的能量大约为 1万亿焦耳 ,飞船加速度可达 100千米/秒^2

地基激光阵列由单个功率 10千瓦 的激光器组成,覆盖面积1平方公里,总输出功率高达 100千兆瓦 。为了弥补长途星际旅行中与星际尘埃相撞导致的损失,这支“星际舰队”将拥有 1000 艘微型飞船,它们的最终目标是4.2光年外的比邻星。天文观测显示比邻星附近有一颗和地球大小差不多的行星—— 比邻星b 。按照科学家的设想,人类飞行器将飞到和比邻星b相距1个天文单位( 1.5亿公里 )的地方,在这个距离飞行器搭载的相机可以捕捉到系外行星表面的高分辨率图像。

菲利普·鲁宾承认,“突破摄星”计划面临诸多难以克服的工程学障碍。比如目前还没有足够强大的 激光器 产生推进光帆的激光束;其次,工程师还有找到一种轻巧而坚韧的 光帆材料 ,既能反射炽热的光束又不被其摧毁;另外,现有 航天器 还无法缩小到一枚邮票大小,重量也很难减轻到几克。

目前,研究团队正在探讨如何将直径10厘米的单个激光器构建成庞大的激光阵列,通过相位锁定放大到足够的强度并汇聚为单光束。和天基激光器相比, 地基激光阵列 成本更低,但也更容易受到大气湍流干扰。这就需要航天器本身返回信号,引导激光束持续照射。

另一方面,光帆的概念几十年之前就已提出,但直到2010年日本“伊卡洛斯”号才展开14平米太阳帆,成功实现靠太阳辐射遨游太空的设想。相比之下,突破摄星微型飞船所承受的绝非温和的“太阳风”,而是人类有史以来最强大激光器制造的“光束风暴”。

为了使十几平米的光帆重量 小于1克 ,其厚度大概相当于 几百个原子 排列在一起。有“新材料之王”美誉的 石墨烯 足够致密,力学性能也非常突出,但这种材料不具有反射性,表面必须敷以涂层。 金属材料 的反射性够强,但重量又不满足要求。考虑到光帆的材质最好兼具透明度和反射性,因此 玻璃 无疑是最好的选择,但其结构和性能还有待优化。

第三个挑战是建造 “晶圆级”航天器 。人类目前制造的绕地球运行的最小航天器是 10厘米 见方,约 1公斤重 的纳米卫星。研究团队希望将航天器进一步小型化,把摄像头、处理器、钚238核电池、通信激光器等元件集成到一枚 微芯片 上。除此之外,星芯片飞船还必须能够抵御加速冲击力和极端寒冷的太空环境。研究人员虽然已经成功制造出火柴盒大小的航天器原型,但重量有 100克 ,远远无法满足“突破摄星”计划的要求。

和其他星际项目相比,“突破摄星”计划并不需要物理学理论有重大突破或出现颠覆性创新技术。上述问题即使只解决一部分,对人类 科技 进步来说都具有革命性意义。比如晶圆级飞船对微电子和通信等领域前沿技术的巨大推动作用;低成本高效率的激光阵列未来可能用于清除太空垃圾;光帆技术的进步将使人造航天器 探索 太阳系的往返时间从几年缩短至几天甚至几小时。

那么扬起光帆的人类飞船什么时候能够拜访半人马座比邻星呢?一个目标是2061年,即尤里·加加林进入太空100周年之际,但鲁宾几乎肯定无法看到这一天。对于他来说,解决技术问题的每一步不但为人类开辟前往另一颗星星的道路,还将我们对未知世界的 探索 一次次推向前沿。 与其坐等未来,不如主动去创造未来。 也许,这才是“突破摄星”计划的真正意义所在。

Ⅲ 三体比狂飙出来早吗

早的多。
《三体》是刘慈欣创作的系列长篇科幻小说,包括《三体》、《三体Ⅱ·黑暗森林》、《三体Ⅲ·死神永生》,第一部于2006年5月起橡滑在《科幻颤宽世界》杂志上连载,第二部于2008年5月梁洞腊首次出版,第三部则于2010年11月出版。

Ⅳ 太空电梯是哪个小说

《三体》中的太空电梯,有可能成为现实吗?

中科院物理所
回答于 2023-01-21

《流浪地球2》中出现了太空电梯的身影
导读:
刘慈欣的长篇科幻小说《三体》的动画片版已于去年年底在B站上映,电影《流浪地球2》将在今年春节的1月22日开始在全国各大影院闪亮登场。它们有一个共同特点,就是里面都有太空电梯的场景。太空电梯只是科幻吗?会有真正实现的那一天吗?
撰文 | 庞之浩

国外科幻片中的太空电梯
记得小时候看过一本18世纪德国著名的儿童文学作品,书名为《吹牛大王历险记》。书中的主人公为了到月亮上捡回他扔上去的银斧,就在地上种了一粒土耳其豌豆,豌豆雀姿伏苗生长很快,不久就长到天上去了。他顺着豆藤向上爬,仅一个多小时,就成功爬上了月亮。于是,这根能通向月亮的豆藤就永远刻印在了我的心里。幻想总是那么美丽。不过,这美丽册渗的幻想,或许真的能照进现实。
很久以来,人类就梦想通过建造太空电梯上天,并一直不断努力。有研究表明,这个梦想将在本世纪实现。2021年11月,国际太空电梯联盟主席斯旺表示,未来太空电梯作为永久性物流基础设施,可将物资和人员运到太空,成为进入太空的新通道。

太空电梯示意图
SAIXIANSHENG
科幻将变现实?
用一根粗大的吊索,一端固定在位于地球赤道上的平台上,另一端紧紧抓住距地面约3.6万千米、在地球静止轨道上运行的航天器,就可使一个形似电梯的吊箱载着顷携货物、人员沿吊索驶向太空……这就是一些国家研究人员正在尝试设计的太空电梯。
现在,进入太空的主要工具是运载火箭,即通过消耗大量燃料来摆脱地球引力。运载火箭所携带的燃料要占到火箭总重量的90%以上,每运送1千克有效载荷上天平均需耗资至少1万美元。
虽然太空电梯造价昂贵,但不需要动用大量燃料,因此建成之后的运行费用比运载火箭低两个量级,且可像高速公路一样24小时运转,将航天器、物资和包括旅游者在内的人员带到太空去。英国一项测算显示,用太空电梯运送1个人和货物的费用相当于用航天飞机运费的0.25%。国际宇航科学院秘书长让·米歇尔·康坦表示,利用太空电梯运输,每千克物资运输成本约为500美元,比使用火箭每千克至少要花1万美元更便宜的多。
太空电梯的概念最早由俄国科学家、航天学之父齐奥尔科夫斯基在20世纪初提出,他曾建议利用一个太空绳索系统,在空间站之上形成人造地心引力。此后,俄国早期太空预言家塔斯安德尔也提出在地球与月球之间搭建一条绳索连接的太空电梯,他认为地心引力能够让绳索伸展开来,使其成为用于运送负荷的空中索道。1965年,苏联航天技术总负责人科罗廖夫组织中央机器制造设计局开始为第一个太空绳索设备做准备,打算用一条钢缆将联盟号宇宙飞船与运载火箭的末级进行连接。不幸的是,这一工程在科罗廖夫去世后就被中止。1979年,著名科幻大师克拉克在其小说《天堂喷泉》再次提出太空电梯的概念,并引起了广泛注意,因为它具有理论基础和科学依据,但存在一系列非常复杂的工程学问题,最大的挑战在于没有人能造出数万千米长的超强缆绳。

用气球试验太空电梯绳索
后来,在2003年9月15日在美国圣达菲召开的研讨会上,俄罗斯和美国等国家的70多位科学家和工程师对太空电梯进行了讨论,最终一致认为它将在21世纪内变成现实。这个曾被视为科学幻想的革命性工程近些年有了较大进展,并有多种方案。

美国电梯港集团公司的太空电梯广告
其中,美国电梯港集团公司正在研制的太空电梯可以一次运送30名乘客,在6个小时内抵达10万千米外的太空。一旦建成,目前地球上运程最长、达800多米的迪拜塔电梯无疑将被远远甩入尘埃。
SAIXIANSHENG
基本原理简单
2018年9月25日,日本用货运飞船把一对用于世界首次太空电梯试验的立方体卫星送往“国际空间站”。接着又从“国际空间站”释放了这对边长为10厘米的立方体卫星,它们之间用长约10米的缆索连接;然后尝试把一个像电梯吊箱的容器通过电动机转动的缆索从一端移动到另一端。
这是人类首次在太空中移动缆索上的容器,也迈出了人类实现太空电梯的一步。
太空电梯的原理并不复杂,基本上就是用一条长长的缆绳一端固定在地球上,另一端固定在地球同步轨道的平衡物(如大型卫星或空间站)上。在引力和向心加速度的相互作用下,缆绳绷紧,太空电梯将利用太阳能或激光能沿缆绳上下运动。
具体说就是用一根粗大的吊索,一端固定在位于地球赤道的平台上,另一端紧紧抓住在地球静止轨道运行的航天器上,这样就可使一个形似电梯的吊箱载着货物沿吊索驶向太空。
太空电梯由四大件组成:基座、缆索、电梯舱和动力系统。
基座是太空电梯在地面上的基础结构。基座必须选在地球赤道地区,可以建在陆上,如高山顶上或高塔尖上;也能建在海上,像一个巨大的港口,世界各地的旅客和物资通过海、陆、空交通运输源源不断地来到这里,然后乘坐或装上太空电梯的电梯舱运往太空。
缆索是太空电梯的关键技术和设备。制造缆索的材料必须有很高的拉伸强度/质量比,可大规模生产,并且还要造价低廉。
电梯舱是乘坐人员和承载货物的部位,功能跟传统电梯一样,但原理和结构不同。电梯舱虽然也是沿着缆索向上爬,但从天上垂下一根超长的绳子来将电梯舱吊上去是不太可能的,它要“自己想办法”爬上去。最简单的方法是在电梯舱上装马达,带动夹着缆索的一组轮子转动,从而取得向上的拉动力。马达的电源可以从缆索上取得,也能用装在电梯舱上的发电机,但这两种都会增加电梯舱的重量。比较省重量的方法是在电梯舱上安装调谐太阳电池板,然后从地面发射激光将电梯舱“射”上去。
其上升动力有多种方案,可采用太阳能、核能和电磁场等。但目前研究表明,采用激光和微波方式比较合适。

标准的太空电梯升降厢
听起来很美,但如何构建它呢?
首先,要建造一个基座平台,这个平台要位于一个暴风雨、闪电和巨浪较少的海域,还要远离飞机的航线和卫星的轨道。太空电梯必须能防雷击,否则它将容易被斩断。
接着,发射卷有缆索的航天器到太空,让缆索的一端借助重物坠回地面,最终与地球上的平台相连接,同时,另一端连接位于太空的航天器上展开。地球自转时,太空电梯缆索就会产生向上的离心力,而地球的重力将缆索往下拉,这样缆索就平衡了。
最终,将履带轨道固定在缆索的两端,并且依靠从地面发射的激光转换成的电能作为动力加以推动。它将建造成为管状形的通道,沿轨道来回运行时,可以将航天器、各种货物和乘客带入太空。他们可以乘座太空电梯沿管道升降。

运行在地球静止轨道太空电梯的示意图
现在,美国航空航天局和欧洲航天局等著名航天机构都参与到了太空电梯合作中,但令科学家们最头疼的是研发资金短缺。美国航空航天局太空电梯首席科学家爱德华兹估计该项目至少要花费70~100亿美元。

早期的太空电梯设想
SAIXIANSHENG
俄美积极攻关
俄罗斯和美国都在研制太空电梯。其基本思路是一样的,不同的是俄罗斯的太空电梯首先考虑的是如何从太空往地球运回物资,而美国提出的太空电梯的重点是从地面向太空运送物资。
俄罗斯拟在月球表面建立永久性基地,然后用太空电梯将货物运至月球基地或者运回地球。尽管这种太空电梯的运行速度非常缓慢,但却可以大幅降低人类进行太空探测的费用。俄罗斯设计的太空电梯由人造卫星、宇宙飞船、有效载荷舱以及细长坚韧的特种索道组成。
欧洲航天局曾委托俄罗斯建造一部可以把太空物资直接从“国际空间站”运回地球的太空电梯。具体方案是:装有货物的太空舱从“国际空间站”通过一根大约400千米长的缆绳送回地球。虽然缆绳很长,但其重量不会超过6千克,是用特别材料制成的。进入大气层后,缆绳会燃烧掉,之后,货物依靠自带的气球继续落向地球。但由于资金等原因,这一项目现已被搁置。

从海上通天的太空电梯
美国西雅图高电梯系统公司的太空电梯项正在进行相关的技术研发。其核心部分是研制一条距离地球表面将近10万千米长的缆绳。其靠近地球的一端将被固定在可能位于太平洋中部某个地方的基站,而另一端将连接到一个在太空中绕地球静止轨道运行的物体上以充当平衡锤,它本身所具备的动力将能够使缆绳绷紧,从而使飞行器等运载工具能够上下穿梭。
在俄美设计的太空电梯中,太空电梯的吊索是一条可两面使用的轨道,其周围包裹着管道,电梯可借助磁悬浮技术在管道内沿吊索的两面上下对开。
由于太空电梯的缆绳要承受地心引力和离心力的双重拉扯,所以目前建造太空电梯的最大障碍是缆索的建造,它需要用又强又轻的材料制成,并能够经受住大气层内外向它袭来的任何物体的撞击。为此,太空电梯的概念提出后的很长一段时间里,它被认为是不可能实现的,因为不管用多么坚固的材料制造缆索,都承受不了太空电梯的重量而发生断裂。

日本太空电梯绳索试验设备
1990年,美国科学家想到了使用像钻石一样强韧但又高弹的纳米碳管。其初步设想是:支撑太空电梯的缆绳是一束由10亿条、 长达10万千米的纳米碳管制成,每条纳米碳管含有7.2×1017个碳原子。
从理论上讲,1米宽、如纸般薄的纳米管织物便足以负载太空电梯了。科学家认为,用碳纳米管制成缆索可以从近地卫星(甚至月球)悬挂到地面,不会因自重而断裂,可以用来为太空太阳能电站向地面输电,或制作太空电梯。
SAIXIANSHENG
日本雄心勃勃
1991年,日本科学家发现了质量轻、强度高的碳纳米管,此后太空电梯这一概念又有可能变为现实,因为碳纳米管的强度是钢材的几十到近百倍。
日本计划从距离地球赤道地面36000千米的地球静止轨道卫星上垂下一条纳米材质的电缆,利用这条电缆,再安装升降电梯,便可以制成太空电梯了。

日本研制的碳纳米管
目前,日本在碳纳米管的开发方面已取得一定进展。上文提到的日本科学家在1991年发现的碳纳米管,就是日本名古屋名城大学的饭岛澄男用通电的碳煤烟研制出来的,这是一种名为巴基球的特殊原子结构。在研究过程中,饭岛澄男发现,各种材料当它的尺度达到纳米级时,它的物理特性如电、磁、热、强度等都会发生很大的变化。碳纳米管是石墨中一层或若干层碳原子卷曲而成的笼状“纤维”,直径只有几到几十纳米,内部是空的。这样的材料很轻,但很结实,密度是钢的1/6,强度却是钢的近百倍。也就是说,一根像缝衣线大小的碳纳米管就能承受一辆汽车的重力。
日本大林建设公司计划在2050建成的太空电梯,该太空电梯由6个长18米,直径7.2米的椭圆柱形电梯间组成,时速约200千米,每次可运送旅客30位。该项目拉动电梯的缆索就将采用比钢坚固20多倍的碳纳米管材料。电梯缆线固定在地表一个定点上,然后利用地球自转的离心力抛出去,另一头系着一个起平衡作用的铅坠。太空电梯电缆的中间部位是一个空间站,站内将建设实验设施及居住的空间。

日本设想的太空电梯
其实,为了取得平衡,避免在地球静止轨道上的空间站因太空电梯太重被拉回地面,保持整体结构的稳定性,在空间站的上面还要装另外一条缆索悬浮在太空中以起平衡作用,从而缓解太空电梯承受的地球引力,即空间站位于电梯缆索的中间部位,站内将建设实验设施及居住的空间。这样,缆索的总长度将达到9.6万千米。
机厢在向太空爬升过程中的动力问题是巨大的挑战。日本拟采用新干线列车技术来解决太空电梯进入太空的动力问题。日本太空升降舱协会有关负责人甚至不无乐观地说,希望未来就像出国旅行一样,人人都可以坐着太空电梯上太空。预计,日本的太空电梯工程总建设费用至少达到1万亿日元。

学生设计的太空电梯概念图
SAIXIANSHENG
月球太空电梯
美国科学家皮尔逊曾制定过一个月球太空电梯方案:在运行于月球同步轨道上的卫星和月球表面间建立一个“升降机”,“升降机”由人造复合纤维缆绳拴住,卫星则好像飞翔在太空中的风筝。皮尔逊认为这一设想在理论上是可行的,因为月球引力只有地球的1/6,依靠目前科技水平制造的合成纤维缆绳已经足够满足承担运输工作的强度要求。与此同时,在月球周围也不存在废弃的火箭推进器、卫星以及其它太空垃圾所带来的危险,又使这一计划免除一项后顾之忧。

在这张从太空俯瞰地球的构想图上,人类可以乘坐太阳能(或电磁)交通工具沿着太空电梯出入天庭。
他描述了一幅美妙的月球太空电梯图画:满载物资和补给的缆车顺着微微弯曲的月球太空电梯缆绳从天际中垂直落下,降落在月球的某一地点,地球探险者可以轻松到达月球表面任何角落,寻找地下的固态水。
也许有人会觉得皮尔逊的想法过于疯狂,但美国航空航天局的先进概念研究所却不这么认为。这家独立机构在2004年就资助皮尔逊7.5万美元用于设计其月球太空电梯。

乘太空电梯登天
2014年,由美国航空航天局前工程师迈克尔•莱恩创办的电梯港集团公司宣称,由于在月球上建太空电梯比在地球上建更容易,所以该公司可用现有技术在月球上建造一座太空电梯,并表示这一想法能在较快成为现实。其具体设想是:从月球上空5万千米处垂向月球表面的月球太空电梯,因为月球的引力小,并且月球上基本没有空气,所以可以大大降低对缆绳强度的要求,只需使用一种名叫柴隆(Zylon)的高强度、高耐热性复合纤维,就能实现打造月球太空电梯的梦想。
从理论上讲,制造月球太空电梯的材料会比制造地球太空电梯要轻许多,其缆绳的一端固定在月球表面某个面朝地球的地点。不过,月球太空电梯较小,只能运输200~250千克的货物。如果用它来采集和运输月球矿石标本,则完全足够,这也将使月球采矿和运回地球的成本大大降低。

太空电梯方案之一
建成后的月球太空电梯还可以与地球太空电梯连成一体,将来有一天,人类只需经过几次换乘,就可以乘坐太空电梯从地球抵达月球了。
近年,又有一种新的太空电梯方案问世——可充气太空电梯。根据设计和建造方案,该太空电梯将高约20千米。未来,航天员和运载火箭可先搭乘可充气太空电梯进入位于平流层的电梯顶端发射平台,然后再点火起飞进入太空。它相当于运载器的第一级平台,而且航天器还可以返回塔顶平台加油再重新起飞。这一技术有望为传统火箭节约30%以上的燃料。
长期以来,工程师们一直认为太空电梯研制难度太大,因为没有任何物质能够支撑自己达到太空的高度。然而这种最新解决方案绕开了这个问题。根据设计方案,只需将太空电梯建造到高达20千米的平流层。太空电梯建造到平流层总比直达地球静止轨道高度要容易、可行得多。
SAIXIANSHENG
工程困难重重
目前,研制太空电梯最大的挑战是能否以低成本、大规模生产出碳纳米管纤维材料,因为这种材料现在还只是毫米级制品,距实用差距甚远。从理论上说,如果用碳纳米管纤维材料造出直径1毫米的碳纳米绳,该纳米绳就可以承载60吨的重量。迄今为止,科学家仍然无法用碳纳米管编织出长长的缆绳。此外,每克碳纳米管就价值500美元,要制造出一条10万千米长的碳纳米缆绳就十分昂贵了。
另外,向太空发射各种电梯建设材料花费巨大,且如果太空电梯因严重事故崩塌,空中和地面的损失也将十分惊人。
还有,当太阳风向太空电梯施加压力时,来自月球和太阳的重力作用将使绳索变得摇摆不定。这将有可能使太空电梯摇摆造成太空交通障碍,太空电梯也可能会碰撞上人造卫星或者太空垃圾残骸,这样的碰撞将导致绳索断裂或太空电梯失事。为此,太空电梯必须在内部建造推进器,以稳定太空电梯致命的摇摆振动,但这又将增加了建造的难度和电梯建造和维护成本。也有关专家认为,地球磁场可以自然地削弱太空电梯的摇摆振动,用活动锚也可控制绳索摇摆。

太空电梯的基站可以建在海上。
再者,在地球外层、距离地面1000~20000千米的区域,分布着一条强度很高的辐射带,而在穿越该区域的过程中,航天员们可能会受到致命的辐射。如果缺乏有效的防护措施,乘坐太空电梯的乘客将会受到高强度射线的照射。此前,对于从事高轨道航天飞行的航天员们来说,分布在地球外部的辐射层已构成严重的威胁。当年参加“阿波罗”计划的航天员们曾穿越这一地区。由于当时飞船的速度很快,因此他们受到射线照射的时间很短,计量也不足以致命。然而,太空电梯的爬升速度却要慢很多——不会超过200千米/小时。这就意味着,搭乘太空电梯的航天员必须在辐射区中呆上至少3天的时间。对此,虽然科学家们已提出了多种解决方案,但任何一种都存在着这样或那样的缺陷。
有一种解决方案是在太空电梯外部建造一个防护层。但这会是太空电梯变得异常笨重和复杂,难以克服地球引力的影响。

太空电梯会受到太空垃圾的袭击
另一种解决方案是将起始平台设在远离赤道的地区,这样辐射带的强度就不会太过强烈。但专家们认为,即使这样,仍无法确保航天员不会受到致命剂量辐射的伤害。况且,如果太空电梯的起始点太靠近北纬45°地区,那么地球旋转所产生的离心力将会使固定太空电梯的缆绳偏向南方,同时,它还会受到各种恶劣天气条件的影响。
还有科学家提出可在太空电梯周围构建一层人造磁场。通过这种方式将可有效抵御各种危险的射线。但此举会严重削弱太空电梯的升力,导致向太空运送物资和人员的能量消耗大幅度增加。

科幻片中太空电梯基座
太空电梯还会面临许多安全问题需要解决。例如,雷击、流星、太空碎片、飓风、原子氧等,其中有的已经有对策了。例如,有两种办法可使太空电梯免遭雷击:其一是将太空电梯的基座选在地球上的无雷区,因为地球上有些地区常年无雷;其二是将太空电梯的基座建在6000米高的山顶上,因为在此高度一般很少发生闪电。对付太空碎片的办法是:对太空垃圾进行密切的跟踪和监视;采用移动基站,使缆索避开太空垃圾的撞击;在500~1700千米这一段增加缆索的厚度。对付飓风的办法是将基座建在没有飓风的区域,或者增加缆索的强度。
另外,由于建造太空电梯所用的碳纳米绳技术过难,成本过高,所以地球太空电梯至今仍停留在美好的蓝图阶段,但月球太空电梯有可能先问世。如果地球太空电梯取得突破性进展,人类就将走进大众太空旅游的新时代。
SAIXIANSHENG
结语
目前,碳纳米管和超强石墨烯被认为是建造太空电梯缆绳的理想材料;在设计方面,科学家目前已提出8个比较稳健、合理的科学设计方案;在工程方面,一些国家的科学家已开展一些小型实验并准备深入验证。我国清华大学魏飞教授团队曾成功制备出世界上最长的、单根长度达半米以上的碳纳米管,创造了新的世界纪录。相关内容近日在线发表在国际著名期刊《美国化学会纳米》上。

艺术家笔下通往天堂的太空电梯
国际太空电梯联盟主席斯旺在2021年11月介绍:根据目前设计,太空电梯攀爬速度约为每小时200千米。未来,随着缆绳加长、轿厢攀爬速度加快,预计8天可到达地球同步轨道,14天可到达月球,61天可到达火星。斯旺认为,未来人类建火星村、月球村需要发射大量物资到太空,星际旅行也备受期待,太空电梯非常具有商业竞争力。太空电梯用太阳能驱动,不像发射火箭那样消耗大量化学燃料,而且太空电梯产生空间碎片的可能性很小,是一条绿色天路。
国际太空电梯联盟副主席莱特称,火箭发射不会因此被抛弃,因为火箭比太空电梯速度更快,能迅速穿越辐射带,已经有人提出以“太空电梯+火箭”的方式运输,实现互补。
根据目前的科技水平和发展速度看,有人预计太空电梯将在2050—2100年投入业务运营。
参考资料:

Ⅳ 《三体》里的水滴是绝对光滑的,那怎么还能被机械爪抓住回收

万有引力,可能是被引力所吸引过来的。首先,《三体》中直接说了,水滴的质量不大,在10吨以下,刘慈欣也直接说了不是用中子物质制造的。其次,它的分子结构非常严密,应该是一种晶体,即使在放大1000万倍后,地球人还是没有看到它的不光滑之处,且分子排列有序,没有任何振动。放大1000万倍,我们原则上可以看见一纳米了,也就是说,几乎能看见原子或分子了。

如果硬要确定水滴的设定成立,我们必须假设一种新型固体。这种固体也许存在,尚待人们去发现。我觉得,石墨烯就是类似水滴需要的材料,不过是二维的,不是三维的。石墨烯是由碳原子构成的二维的网状结构,只有一个碳原子厚,如果放大,就会发现它的基本结构是蜂巢状的。虽然只有一个碳原子厚,但一平方米大小的石墨烯可以承重一只猫,也就是说,石墨烯非常结实。石墨烯的发现让它的发现者获得了2010年度诺贝尔物理学奖。也许,制造水滴的材料是一种三维的石墨烯,但还没有任何物理学家敢于想象构成它的是什么原子。虽然说绝对光滑,但可能机械爪里面可能有固定这种物质的东西。

Ⅵ 目前减碳成了热门话题,但可别误读,碳可是地球上生命的关键元素

目前“减碳”成了热门话题, 碳好像成了一只人人喊打的过街老鼠。 可是要搞清楚 ,这里所减的碳是指导致气候变化的二氧化碳(CO2),千万陆迅丛不昌渣要误解为逢碳必减,因为碳对我们人类很重要,而且适量的二氧化碳也是我们人类必需的,要减的是过量的CO2。

碳是自然界最普遍的元素之一,是地球上能够形成生命的最核心要素,没有碳,就没有生命。碳与我们日常生活息息相关。在人类的发展 历史 上,碳不仅是食物的来源、能量的来源,更是材料的来源。

原英国石油(BP)公司首席执行官约翰.布朗勋爵写了一本书,叫《七个改变了世界的元素》。这七个元素分别是铁、碳、金、银、铀、钛和硅。在布朗勋爵眼里,碳如钢铁,是帮助人类建成了当今现代 社会 的“七大元素”之一,功不可没。下面就来说说“七大元素”之一的碳。

碳是一种不可思议的元素。以一种方式排列碳原子,它们就会变成柔软柔韧的石墨。换一种方式重新排列,你会得到金刚石,世界上最坚硬的材料之一。

碳也是地球上大多数生命的关键成分; 制造第一个纹身的颜料; 石墨烯是技术奇迹的基础,这种材料比钢铁更坚固,比橡胶更柔韧。

碳以碳-12的形式在自然界存在,它几乎构成了宇宙中99%的碳; 另外碳-13约占1%; 还有碳-14,它只占碳总量的很小一部分,但在测定有机物体的年代方面非常重要。

1)碳的基本信息

2)碳是如何形成的:从恒星到生命

碳是在恒星内部产生的,尽管它不是在大爆炸中产生的。根据Swinburne天体物理和超级计算中心的资料,它在恒星的内部通过一个被称为三重alpha过程的反应形成。在这个过程中,三个氦核发生聚变。当一颗大质量恒星变成超新星时,碳会散射,并能被合并成下一代恒星和行星。

在燃烧了大部分氢的老星星中,剩余的氦会聚集起来。每个氦原子核有两个质子和两个中子。在超过1亿开尔文(179,999,540.6华氏度)的高温下,氦核开始聚变,首先成对形成不稳定的4质子铍核,最终,当足够多的铍核出现时,变成一个铍和一个氦。最后的结果是: 原子中有6个质子和6个中子。

碳是一个模式制造者。它可以与自己连接,形成长而有弹性的链,称为聚合物。由于它的电子排列,它还可以与多达四个其他原子结合。原子被排列成原子核,原子核被电子云包围,电子在离原子核不同距离的地方轰鸣(zinging)。根据加州大学戴维斯分校(University of California, Davis)资料,化学家将这些距离视为壳层,并通过每个壳层的内容来定义原子的属性。碳有两个电子层,第一个电子层有两个电子,第二个电子层有八个可能的电子空间中的四个。当原子成键时,它们在最外层共用电子。碳的最外层有四个空的空间,使它能与其他四个原子结合(它还可以通过形成双键和三键稳定地与更少的原子结合)。

碳是一种非金属,它可以与自身和许多其他化学元素结合。据化学解释网站,近1000万种碳化合物已经被发现,科学家估计,碳是95%的已知碳化合物的基石。因为它比其他任何元素都能形成更多的化合物,所以被称为“元素之王”。由于碳具有与许多其他元素结合的惊人能力,这是它对几乎所有生命都至关重要的主要原因。

碳元素的发现已经湮没在 历史 长河中,这种元素在史前人类以木炭的形式被发现。根据世界煤炭协会(world coal Association)的数据,碳作为煤炭仍然是全球主要的燃料来源,提供了世界约37%的电力。煤炭也是钢铁生产的关键成分,而碳的另一种形式石墨是一种常见的工业润滑剂。

碳-14是一种碳的放射性同位素,考古学家使用它来确定物体和遗骸的年代。碳-14自然存在于大气中。根据爱荷华州立大学无损评估中心,植物在呼吸作用中吸收它,在呼吸作用中,它们将光合作用中产生的糖转化为它们用来生长和维持其他过程的能量。动物通过吃植物或其他以植物为食的动物将碳-14吸收到体内。据亚利桑那大学,碳-14有5,730年的半衰期,这意味着在那之后,样本中一半的碳-14会衰变。

因为有机体死后会停止吸收碳-14,所以科学家可以用碳-14的半衰期作为一种时钟来测量有机体死后的时间。这种方法适用于曾经有生命的生物体,包括由木头或其他植物材早樱料制成的物体。

3)我们所知的碳

4)正在进行的碳研究

碳是一种长期研究的元素,但这并不意味着没有更多的元素可以发现。事实上,与我们的史前祖先燃烧木炭元素相同的碳元素可能是下一代 科技 材料的关键。

1985年,德克萨斯州莱斯大学的Rick Smalley和Robert Curl及其同事发现了一种新的碳形式。根据美国化学学会的资料,通过用激光汽化石墨,科学家们创造了一种由纯碳组成的神秘的新分子。这个分子原来是一个由60个碳原子组成的足球形状的球体。研究小组将他们的发现命名为巴克敏斯特富勒烯,以一位设计了测地圆顶的建筑师的名字命名。这种分子现在被更普遍地称为“巴基球”。发现它的研究人员获得了1996年的诺贝尔化学奖。

根据2009年发表在《化学信息与建模杂志》上的一项研究,人们发现巴克球可以抑制艾滋病毒的传播; 医学研究人员正致力于将药物一个分子接一个分子地附着在巴基球上,以便将药物直接输送到体内的感染或肿瘤部位 ; 这包括哥伦比亚大学、赖斯大学和其他大学的研究。

2021年,中国燕山大学田永军(Yongjun Tian)领导的研究人员发现,通过压缩巴基球,他们可以制造出迄今为止所见过的最坚硬的非晶体材料,几乎和钻石一样坚硬。

其他被称为富勒烯的新型纯碳分子也被发现,包括椭圆形的“巴克耶蛋”(buckyeggs)和具有惊人导电性能的碳纳米管。碳化学的热度仍然足以让人获得诺贝尔奖: 2010年,来自日本和美国的研究人员因研究出如何使用钯原子将碳原子连接在一起而获奖,据诺贝尔基金会(Nobel Foundation)称,这是一种能够制造大型复杂碳分子的方法。

科学家和工程师们正在利用这些碳纳米材料来制造直接来自科幻小说的材料。《纳米快报》2010年的一篇论文报道了一种柔性、导电纺织品的发明,这种纺织品浸入碳纳米管“墨水”中,可用于储存能量,或许为可穿戴电池、太阳能电池和其他电子产品铺平了道路。这种墨水现在可以从化学供应公司买到。

然而,如今碳研究是最热门的研究领域之一,可能涉及到“神奇材料”石墨烯。石墨烯是一层只有一个原子厚的碳。它是已知的最坚固的材料,同时仍具有超轻和柔韧性。而且它的导电性比铜好。科学家们仍在发现石墨烯的新特性。例如,2020年,研究人员在《自然物理学》杂志上报告称,通过正确的方式堆叠石墨烯,他们可以使其具有磁性。

大规模生产石墨烯是一个挑战,尽管研究人员在2014年4月报告称,他们可以只使用厨房搅拌机就能大量生产。2020年,荷兰代尔夫特理工大学的科学家开发了一个数学模型来指导大规模生产。如果科学家们能够很容易地制造出大量石墨烯,这种材料将在 科技 领域发挥巨大的作用。想象一下,具有柔韧性、不易破碎、而且恰好又薄如纸的小玩意儿。事实上,碳从木炭和钻石发展到现在已经有了很长的一段路。

5)碳纳米管

碳纳米管(CNT)是一种由碳原子构成的微小的吸管状结构。这些管子在各种电子、磁性和机械技术中都非常有用。这些管子的直径非常小,它们的测量单位是纳米,一纳米是一米的十亿分之一,大约比人类头发还细1万倍。

碳纳米管的强度至少是钢的100倍,但重量只有钢的六分之一,所以它们可以增加几乎任何材料的强度,据理解纳米网的报道,在导电性和导热性方面比铜更好。

纳米技术正被应用于将海水转化为饮用水的研究。在一项新的研究中,劳伦斯利弗莫尔国家实验室(LLNL)的科学家们开发了一种碳纳米管工艺,可以比传统技术更有效地从海水中提取盐。

例如,传统的海水淡化工艺在高压下泵入海水,使其通过反渗透膜。然后,这些膜排斥所有大颗粒,包括盐,只允许干净的水通过。然而,据LLNL说,这些海水淡化厂非常昂贵,只能处理一个县水需求的大约10%。

在碳纳米管研究中,科学家们模拟了生物膜的结构方式: 本质上是膜内部有孔的基质。他们使用的纳米管特别小,比人的头发还要细5万倍以上。这些微小的纳米管可以容纳非常高的水通量,但又太窄了,一次只能有一个水分子通过。最重要的是,盐离子太大了,无法穿过管子。

本文主要据Stephanie Pappas “Carbon: Facts about an element that is a key ingredient for life on Earth”和Anne Marie Helmenstine“10 Facts About Carbon (Atomic Number 6 or C)”编译。

Ⅶ 石墨烯是什么,为何被称为科学界的明星

石墨烯的神奇功能,大家一定都听说过,但经过这些年的观察,很多人发现自己好像被忽悠了,石墨烯似乎离我们依然很遥远。你相信市场上的石墨烯产品吗?到底石墨烯是一个科技噱头,还是一匹真正的黑马?我们从今天开始开拓一个石墨烯专题,后面陆续讲解有关石墨烯的那些事。

在国家的政策指导下,国内大量企业围绕石墨烯材料展开了创业和研发,一大批相关产品面世销售。当然,这些产品里,有些是非常优秀的功能产品,给我们的生活带来了便捷,也有一些是炒作石墨烯噱头,没有宣传的那么神奇,希望大家擦亮眼睛,避免上当。后面,我会陆续介绍一些真实的应用,也会对一些噱头进行辟谣。

热点内容
总裁言情甜宠有肉小说 发布:2024-11-28 01:15:47 浏览:662
黑暗向情色武侠小说 发布:2024-11-28 01:10:40 浏览:342
男强女强仙侠言情完结小说 发布:2024-11-28 01:00:57 浏览:818
日推荐榜玫瑰小说 发布:2024-11-28 00:56:35 浏览:521
女配小说推荐言情 发布:2024-11-28 00:10:42 浏览:711
都市主角是龙的小说无敌 发布:2024-11-27 22:43:46 浏览:132
适合投稿言情小说的公众号 发布:2024-11-27 21:58:21 浏览:317
好看的民国小说推荐 发布:2024-11-27 21:52:59 浏览:692
2008好看的小说言情 发布:2024-11-27 21:06:28 浏览:36
什么小说好看求推荐2015年 发布:2024-11-27 20:30:10 浏览:294