當前位置:首頁 » 玄幻小說 » 有關載人航天科幻小說

有關載人航天科幻小說

發布時間: 2022-03-25 00:04:41

㈠ 有關中國載人航天的資料

曙光

1970年7月14日,「東方紅一號」發射後不久,科學家就上報了關於發展載人航天的報告。1971年4月,代號為「714工程」的中國載人航天工程全面啟動。

當時的人們,給中國規劃中的宇宙飛船命名為「曙光一號」。遺憾的是,由於種種因素,1972年,「714工程」被迫暫停。

「863計劃」

1986年3月3日,王淦昌、陳芳允、楊嘉墀、王大珩四位科學家聯名向中央呈報了一份《關於跟蹤世界戰略性高技術發展》的建議。中央很快就批准了這個建議,這就是後來著名的「863計劃」。

航天技術是「863計劃」七大領域中的第二領域。「863計劃」對中國載人航天工程起到了催生的作用。

「長二捆」

1990年夏天,中國第一枚大推力捆綁式火箭——長征二號E即「長二捆」火箭順利升空。「長二捆」就是承擔載人飛船發射任務的長征二號F型火箭的前身。

「921工程」

1992年9月21日,中國航天史上一個值得永遠記住的日子——這一天,中央正式批復載人航天工程可行性論證報告。中國載人航天工程正式立項,代號為「921工程」。

航天員選拔

1995年10月,我國決定從空軍殲、強擊機飛行員中選拔首批預備航天員。

不久,12名預備航天員從數千名候選者中脫穎而出,連同2名航天員教練員,組成中國首批航天員的隊伍。

1997年底,經中央軍委批准,由14名預備航天員組成的世界上第三支航天員大隊成立。1998年1月5日,14人到齊。這一天從此成為中國人民解放軍航天員大隊的生日。

神舟一號

1999年11月20日6時30分,神舟一號飛船在酒泉衛星發射基地順利升空,經過21小時的飛行後順利返回地面。

鮮為人知的是,這枚載人航天工程的「先鋒官」,竟是由地面試驗用的電性能測試飛船臨時改裝而成的。將初樣產品直接當成正樣產品使用,在中國航天史上史無前例。

神舟二號

2001年1月10日凌晨,神舟二號飛船發射成功。飛船在軌飛行近7天後返回地面。

神舟二號是第一艘正樣無人飛船,技術狀態與載人飛船基本一致。它的發射完全是按照載人飛船的環境和條件進行的,凡是與航天員生命保障有關的設備,基本上都採用了真實件。

神舟三號

2002年3月25日,神舟三號飛船發射升空,於4月1日返回地面。

神舟三號飛船搭載了人體代謝模擬裝置、擬人生理信號設備以及形體假人,能夠定量模擬航天員呼吸和血液循環等重要生理活動參數。飛船工作正常,預定試驗目標全部達到,試驗獲得圓滿成功。

神舟四號

2002年12月,神舟四號在經受了零下29攝氏度低溫的考驗後,於30日0時30分成功發射,突破了我國低溫發射的歷史紀錄。2003年1月5日,飛船安全返回並完成所有預定試驗內容。

神舟四號除沒有載人外,技術狀態與載人飛船完全一致。飛行中,飛船相繼完成了對地觀測、材料科學、生命科學實驗和空間天文和空間環境探測等任務。

神舟五號

2003年10月15日,我國第一艘載人飛船神舟五號成功發射。中國首位航天員楊利偉成為浩瀚太空的第一位中國訪客。

神舟五號21小時23分鍾的太空行程,標志著中國已成為世界上繼俄羅斯和美國之後第三個能夠獨立開展載人航天活動的國家。

神舟六號

2005年10月12日,我國第二艘載人飛船神舟六號成功發射,航天員費俊龍、聶海勝被順利送上太空。17日凌晨,在經過115小時32分鍾的太空飛行後,飛船返回艙順利著陸。

神舟六號進行了我國載人航天工程的首次多人多天飛行試驗,完成了我國真正意義上有人參與的空間科學實驗。

神舟七號

2008年9月25日,我國第三艘載人飛船神舟七號成功發射,三名航天員翟志剛、劉伯明、景海鵬順利升空。

27日,翟志剛身著我國研製的「飛天」艙外航天服,在身著俄羅斯「海鷹」艙外航天服的劉伯明的輔助下,進行了19分35秒的出艙活動。中國隨之成為世界上第三個掌握空間出艙活動技術的國家。

2008年9月28日傍晚時分,神舟七號飛船在順利完成空間出艙活動和一系列空間科學試驗任務後,成功降落在內蒙古中部阿木古朗草原上。

㈡ 求一本科幻小說講的是一艘載人宇宙飛船從地球出發到火星的旅程主人公叫唐·納德是太空船醫生

這本書的名字叫《飛船醫生》,是美國作家哈利.哈里森的作品,我也在找。

㈢ 以「探夢天宮,放飛理想"為主題的科幻小說,具有科學性,字數在1000字以上,2500字以下。

根據中國載人航天工程網的消息,中國未來的空間站的名稱叫「天宮」。這是一個具有濃郁中國特色、寄託了華人無限憧憬的名字。
天宮一號又叫做空間實驗室,是設立在太空中的實驗室。在人們的歡呼下,龐大的「天宮一號」發射了。發射過程是先發射無人空間實驗室,而後再用運載火箭將載人空間實驗室飛船送入太空,與停留在軌道上的實驗室交會對接,航天員從飛船的附加段進入空間實驗室,就能開展工作了,所以,「天宮一號」建築、設計的十分周到。這樣,航天員們才能夠為我們取得大量實驗數據和珍貴的科學資料。
不光是在建築上十分完美,在這「天宮一號」的名字上都含有特殊的由來。
「天宮一號」的名字讓人聯想起中國古代四大名著之一《西遊記》中的孫悟空大鬧天宮。「天宮」是中華民族對未知太空的通俗叫法。因此,起以「天宮一號」為目標飛行器命名。在此之前,從「神七」到「神十」,是為了檢驗航天員太空實驗的能力和對接空間實驗站的技術成熟度。此後就是載人航天工程的第三步——實現建立太空實驗站並進行料理。屆時將會交替發射載人飛船和貨運飛船。
根據規劃,中國將在2010年發射「天宮」一號目標飛行器。「天宮」一號實際上是空間實驗室的實驗版,採用兩艙構型,分別為實驗艙和資源艙。之後,再發射「神舟八號」。「神八」是一艘無人的神舟飛船,與「天宮」一號進行無人自動對接試驗。2015年前,再陸續發射「天宮」二號、「天宮」三號兩個空間實驗室。 「天宮」二號將主要開展地球觀測和空間地球系統科學、空間應用新技術、空間技術和航天醫學等領域的應用和試驗。「天宮」三號將主要完成驗證再生生保關鍵技術試驗、航天員中期在軌駐留、貨運飛船在軌試驗等,還將開展部分空間科學和航天醫學試驗。
我國目前在研的空間實驗室採用兩艙結構,分別為實驗艙和資源艙。實驗艙可保證艙壓、溫濕度、氣體成分等航天員生存條件,可用於航天員駐留期間在軌工作和生活,密封的後錐段安裝再生生保等設備。實驗艙前端安裝一個對接機構,以及交會對接測量和通信設備,用於支持與飛船實現交會對接。資源艙為軌道機動提供動力,為飛行提供能源。
建設實現空間站的關鍵技術是「空間交會對接」。兩個或兩個以上的航天器通過軌道參數的協調,在同一時間到達太空同一位置的過程稱為交會。對接是在交會的基礎上,通過專門的對接機構將兩個航天器連接成一個整體。實現兩個航天器在太空交會對接的系統,稱為交會對接系統。

㈣ 中國科幻小說的發展歷程(急)

我認為我們是從90年代以後中國科幻小說的發展進入到非常新的時期,1956年到1957年政府當時講「向科學技術進軍」,繁榮科普、繁榮兒童文學,科幻也跟著走向高潮。通過一些兒童讀物,當時的科幻非常家喻戶曉。

我覺得在這個時代,最紅的明星還是上一代的劉慈欣。他在粉碎「四人幫」後最早的那個10年就已經開始寫了。從《三體》開始,科幻作為類型文學這種特殊的文學形式開始出現。以前科幻小說不是類型文學,沒有類型文學的一系列特點,特別是粉絲文化,過去是沒有的,今天粉絲文化已經非常強烈了。

今天其實應該全方位發展科幻,不能放棄少兒科幻這一塊。劉慈欣的書為什麼賣的不好?就是因為現在的社會還不知道科幻這個東西。

㈤ 關於航天航空的科幻小說

1000字很困難!............你要幾十萬上百萬字的都好找一點!
讓我想想!
你可以去看看家園的故事情節
http://tieba..com/p/225043648

㈥ 中國在載人航天中有哪些驚人的傑作

載人航天是人類駕駛和乘坐載人航天器在太空中從事各種探測、研究、試驗、生產和軍事應用的往返飛行活動。其目的在於突破地球大氣的屏障和克服地球引力,把人類的活動范圍從陸地、海洋和大氣層擴展到太空,更廣泛和更深入地認識整個宇宙,並充分利用太空和載人航天器的特殊環境進行各種研究和試驗活動,開發太空極其豐富的資源。

㈦ 求推薦與太空梭有關的科幻小說

這是要幹嘛,寫作文嗎?這玩意快被淘汰了,科技含量沒有那麼誇張,事故率又高。。。
而且你得明白一點,對太空梭寫實的話就算不上科幻小說了,小說里的太空梭一般都能進行深空航行(而我們的太空梭根本不能做這種任務,因為沒有回程的燃料,而且他也不能在外星球降落,事實上他降落的條件也比較苛刻)電影里的太空梭也往往被誇大了。如此低下的能力就限制了其故事空間,事實上運載飛船的寫實小說還有一些比如《太空漂流記》,還有一篇前南作者寫的文章忘了叫什麼名。
如果非要一些文章的話,可以去讀一讀寫這玩意的科學美文
《誰是最可愛的人》《挑戰者號追思》《連空氣都是甜的》
在科幻小說里太空梭屬於很低端的玩意啊,一般來說都不屑於寫這個吧,電影倒有一些出場,布魯斯威利版的《世界末日》(此劇有美國航天局把關下創作的。)裡面的太空梭設計的還比較好,但是也很科幻了。離現實中的太空梭有較大差距(因為現實里的太空梭根本無法完成此類任務)比如裡面的太空梭能在隕石上降落,但現實中太空梭幾乎沒可能這么做,而且也么這么多燃料,事實上太空梭的燃料很少,空間也不大,在電影里太空梭也是在空間站里加註燃料後在啟程飛往隕石的,而俄羅斯設計的暴風雪能源太空梭更暴力,直接就取消了太空梭的主推進引擎,只有兩個小型引擎供調整軌道姿態用。
《月球陷阱》里也有太空梭作為搞笑者來襲,嘿,這就是我們的飛船。。。
即便是這樣太空梭的作用還是在電影里被誇大了,所以到現在太空梭已經走下了舞台,下一步大家都開始研製下一代的載荷工具了

㈧ 有關航天方面的資料

[編輯本段]航天術語
航天又稱空間飛行或宇宙航行。「航天」系泛指航天器在太空在地球大氣層以外(包括太陽系內)的航行活動,粗分為載人航天和不載人航天兩大類。「航天」這個人類歷史長河中的新事物應用了眾多涉及基本概念的名詞,這些名詞與「航空"有很大差別。
[編輯本段]航天生活
宇宙環境是極為惡劣的,對人體有害的主要因素是高真空、高缺氧、宇宙輻射、溫度差異等,這些不利因素會對人體產生嚴重傷害。在這種環境中,航天員是無法生存和工作的。面對嚴峻的宇宙空間環境,怎樣才能保證航天員的生命安全呢?我們的科技人員為其研製了一個基本與外界隔絕的密閉環境即密閉座艙,用來保護航天員。
一會兒是早晨,一會兒是黑夜
人們長期的生活習慣是「日出而作,日落而息」,睡眠一般都安排在夜晚。飛船在航天飛行中的晝夜周期和我們在地球上的晝夜周期是不同的。地球上的一天是一次日落日出,並定為24小時。空間飛行時的一次日落日出,周期長短不一,因為它和飛船繞地球飛行的軌道高低相關。軌道高,晝夜周期就長;軌道低,晝夜周期就短。飛船航天飛行期間的晝夜周期,白天和黑夜時間長短是不一致的,白天時間長,黑夜時間短,90分鍾一個晝夜周期,最長的黑夜僅僅是37分鍾。飛船由地球陽面進入陰面時,就如同由白天進入黃昏黑夜一樣。太空梭速度很快,太陽出來時好像「迅雷」似的一躍而出,太陽落山時也如「旋風」一樣迅速地隱去。
一個航天員曾經這樣描述宇宙間的一天:早晨,計算機控制的鍾喚醒我們起床。醒來拉開窗簾看宇宙空間,陽光燦爛,天色真美。可是不大一會兒,太陽沒有了,天暗下來了,黑夜來臨了,我們想又該睡覺了吧。真是有趣極了,一會兒是早晨,一會兒是黑夜……
站著睡躺著睡都一樣
在宇宙空間最特殊的就是睡覺姿勢,失重時,身體完全放鬆會自然形成一種弓狀姿勢。航天專家認為,在太空中睡眠,身體稍微彎曲成弓狀,比完全伸直平躺著要舒服得多。
航天員在太空飛行中,睡袋一般固定在飛船內的艙壁上,如果不這樣,飛船內的姿態在發動機開動時,就可能跟艙壁碰撞。所以,航天員一般還是喜歡將睡袋緊貼著艙壁睡覺,這樣就像睡在床上一樣舒服。在失重時,反正分不清上和下,站著躺著睡都一樣,所以,航天員既可以靠著天花板睡,又可以筆直地站著靠牆壁睡,想怎麼睡都是可以的。
由於人在失重時飄浮,航天員行動起來會感到困難和不方便,動作都不像在地面上那樣協調。坐立不穩搖搖晃晃,稍一抬頭仰身就有可能來個大翻身,彎腰時又可能翻筋斗,所以一切動作都得小心從事。
航天員在宇宙飛行中可以遙望地球景色,這也是他們太空生活的一大樂趣。自古以來,飛向太空就是人類最美好的遐想。航天員在飛船上看到的地球漂亮極了,它是一個綠色的球體。白天你仔細看去時,地球大部分是淺藍色,密密的森林帶看起來更是藍色的,惟一真正的綠色地帶是中國的西藏高原地區。一些高山湖泊看起來是明亮的並且呈鮮綠色,好像硫酸銅礦地區顏色。溫度很低又沒有雲彩的地區,如我國喜馬拉雅山那樣的高山區域,就能很清楚地看到那兒的地貌。航天員能看到的最令人目眩神迷的奇景,要算是伊朗的卡維爾鹽漬大沙漠,這片大沙漠看上去像木星,中間有一個紅色、褐色和白色的大旋渦,這是因為鹽湖經過一代又一代的蒸發之後而留下的光輝耀眼的痕跡,它像綠寶石一般閃閃發光。
離不開體育鍛煉
航天員生活在太空當中,同樣離不開體育鍛煉。它除了增強體質外,還有其特 殊意義:增強對失重及其他航天環境的適應能力,減少航天飛行中不良環境對航天員的有害影響。在長期航天的空間站內,都設有專為航天員體育鍛煉的「小型體育場」,設置一些特殊的航天體育器具供航天員使用。這些器具有自行車功量計、微型跑道、彈簧拉力器及負壓筒等。
在宇宙中航行的航天員和地球上的人一樣,都需要有個人清潔衛生的處理,如刷牙、洗臉、洗澡、大小便等等。失重條件下處理清潔衛生及廢物非常復雜,需要有特殊的設施和技巧。
失重時刷牙,牙膏泡沫很容易飄浮起來,水珠在艙內飛飄,會影響人的健康和儀器正常運轉。飛船中的航天員不能採取地面上的刷牙工具和方法。那樣做,說不定在哪一環節把水泄漏出去,水就會飄浮起來,所以,航天員只能採用比較簡單的方式來刷牙。美國採用的是一種特製的橡皮糖,讓航天員充分咀嚼以代替刷牙,達到清潔牙齒的目的。航天員洗臉,其實是取一塊浸泡有清潔護理液的濕毛巾擦洗面部。隨後,把毛巾鋪在按摩刷上用來梳理頭發。

㈨ 生活中有哪些科技在以前的科幻小說中預言過

《小靈通漫遊未來》是通過眼明手快的小記者小靈通漫遊未來市的所見所聞,對未來作全景式的「掃描」。 有一些科學幻想已經實現,或者即將實現:
小靈通前往「未來世界」,乘的是「原子能氣墊船」。如今,氣墊船已經很普通,從上海至寧波,從深圳到珠海,每天都有「飛翔船」往返。所謂「飛翔船」,也就是氣墊船。


在《小靈通漫遊未來》中,寫及「未來市農廠」,在巨大的玻璃溫室里,工廠化生產農產品。這樣的「農廠」,如今已經有了。

當然,書中所寫的「一個月可以收一次蘋果,半個月可以收一次甘蔗,10天可以收一次白菜、菠菜,而韭菜在一個星期內就可以割一次」,還有那「紅紅的蘋果,比臉盆還大,黃澄澄的橘子像一隻只南瓜」,「切面圓圓的像張圓桌面」的西瓜……則尚需努力,才能變為現實。

㈩ 中國航天小短文

首頁 航天新聞 航天參考 航天科普 政策法規 電子期刊 文獻資料庫 航天財會

當前位置:首頁 > 航天科普 > 運載與發射 > 正文

火箭: 宇航時代的開拓者

信息發布時間:2007-01-08

一. 引言

這個 「星際旅行漫談」 系列原本是為了討論未來的星際旅行技術而寫的。 不過今天卻要來討論一種比較 「土」 的技術: 火箭。 之所以討論火箭, 主要的原因有兩個: 一個是因為我國的第一艘載人飛船 「神舟五號」 即將發射, 在這個中國宇航員即將叩開星際旅行之門的時刻, 我們這個系列不應該缺席, 更不應該讓火箭這位宇航時代的開拓者在這個系列中缺席。 另一個是因為火箭雖然是一種不那麼 「未來」 的技術, 但我覺得, 在我和讀者們能夠看得到的將來, 承載人類星際旅行之夢的技術很有可能仍然是火箭這匹識途的老馬。

二. 宇宙速度

火箭理論的先驅者、 俄國科學家齊奧爾科夫斯基 (K. E. Tsiolkovsky 1857-1935) 有一句名言: 「地球是人類的搖籃。 但人類不會永遠躺在搖籃里, 他們會不斷探索新的天體和空間。 人類首先將小心翼翼地穿過大氣層, 然後再去征服太陽周圍的整個空間」。

星際旅行是一條漫長的征途, 人類迄今在這條征途上走過的路程幾乎恰好就是 「征服太陽周圍的整個空間」, 而在這征途上的第一站也正是 「穿過大氣層」[注一]。

在人類發射的航天器中數量最多的就是那些剛剛 「穿過大氣層」 的航天器 - 人造地球衛星, 迄今已經發射了五千多顆。 其中第一顆是 46 年前 (1957 年 10 月 4 日) 在前蘇聯的拜克努爾發射場發射升空的。

從運動學上講, 這些人造地球衛星的飛行軌跡與我們隨手拋擲的一塊石頭的飛行軌跡是屬於同一類型的。 我們拋擲石頭時, 拋擲得越快, 石頭飛得就越遠, 石頭飛行軌跡的彎曲程度也就越小。 倘若石頭拋擲得如此之快, 以致於飛行軌跡的彎曲程度與地球表面的彎曲程度相同, 石頭就永遠也不會落到地面了[注二]。 這樣的石頭就變成了一顆環繞地球運轉的小衛星。 一般來說, 石頭也好, 衛星也罷, 它們的飛行軌跡都是橢圓[注三]。 對於石頭來說, 如果它飛得不夠快, 那它很快就會落到地面, 從而我們只能看到橢圓軌道的一個極小的部分, 那樣的一個部分近似於一段拋物線。

那麼一塊石頭要拋擲得多快才能不落回地面呢? 或者說一枚火箭要能達到什麼樣的速度才能發射人造地球衛星呢? 這個問題的答案很簡單, 尤其是對於圓軌道的情形。 在圓軌道情形下, 假如軌道的半徑為 r, 衛星的飛行速度為 v[注四], 則維持衛星飛行所需的向心力為 F=mv2/r (m 為衛星質量), 這一向心力來源於地球對衛星的引力, 其大小為 F=GMm/r2 (M 為地球質量)。 由此可以得到 v=(GM/r)1/2。 假如衛星軌道很低, 則 r 約等於地球半徑 R, 由此可得 v≈7.9 公里/秒。 這個速度被稱為 「第一宇宙速度」, 它是人類邁向星空所要達到的最低速度。

但是細心的讀者可能會從上面的計算結果中提出一個問題, 那就是 v=(GM/r)1/2 隨著軌道半徑的增加反而減小, 也就是說軌道越高的衛星, 飛行的速度就越小。 但是直覺上, 把東西扔得越高難道不應該越困難嗎? 再說, 倘若把衛星發射得越高所需的速度就越小, 那麼 v≈7.9 公里/秒 這個 「第一宇宙速度」 豈不就不再是發射人造地球衛星所要達到的最低速度了? 這些問題的出現表明對於發射衛星來說, 衛星的飛行速度並不是所需考慮的唯一因素。 那麼, 還有什麼因素需要考慮呢? 答案是很多, 其中最重要的一個是引力勢能。 事實上描述發射衛星困難程度的更有價值的物理量是發射所需的能量, 也就是把衛星從地面上的靜止狀態送到軌道上的運動狀態所需提供的能量。 因此我們改從這個角度來分析。 在地面上, 衛星的動能為零[注五], 勢能為 -GMm/R (R 為地球半徑), 總能量為 -GMm/R; 在軌道上, 衛星的動能為 mv2/2=GMm/2r (這里運用了 v=(GM/r)1/2), 勢能為 -GMm/r, 總能量為 -GMm/2r。 因此發射衛星所需的能量為 GMm/R - GMm/2r。 這一能量相當於把衛星加速到 v=[GM(2/R - 1/r)]1/2 所需的能量。 由於 r>R, 這一速度顯然大於 v=(GM/R)1/2≈7.9 公里/秒 (而且也符合軌道越高發射所需能量越多這一 「直覺」)。 這表明 「第一宇宙速度」 的確是發射人造地球衛星所需的最低速度, 只不過它表示的並不是飛行速度, 而是火箭提供給衛星的能量所對應的等價速度。 在發射衛星的全過程中, 火箭本身的飛行速度完全可以在任何時刻都低於這一速度。

上面的分析是針對圓軌道的, 那麼橢圓軌道的情況如何呢? 在橢圓軌道上, 衛星的飛行速度不是恆定的, 分析起來要困難一些, 但結果卻同樣很簡單, 衛星在橢圓軌道上的總能量仍然為 -GMm/2r, 只不過這里 r 表示所謂的 「半長徑」, 即橢圓軌道長軸長度的一半。 因此上面關於 「第一宇宙速度」 是發射人造地球衛星所需的最小 (等價) 速度的結論對於橢圓軌道也成立, 是一個普遍的結論。

在人造地球衛星之後, 下一步當然就是要把航天器發射到更遠的地方 - 比方說月球 - 上去。 那麼為了實現這一步火箭需要達到的速度又是多少呢? 這個問題的答案也很簡單, 不過在回答之前先要對 「更遠的地方」 做一個界定。 所謂 「更遠的地方」, 指的是離地心的距離遠比地球半徑 (約為 6.4×103 公里) 大, 但又遠比地球與太陽之間的距離 (約為 1.5×108 公里) 小。 之所以要有後面這一限制, 是因為在討論中我們要忽略太陽的引力場[注六]。 由於航天器離地心的距離遠比地球半徑大, 因此與發射前在地面上的引力勢能相比, 它在發射後的引力勢能可以被忽略; 另一方面, 由於航天器不再做環繞地球的運動, 其動能也就不再受到限制, 最小可能的動能為零。 因此發射後航天器的最小總能量近似為零。 由於發射前航天器的總能量為 -GMm/R, 因此需要由火箭提供給航天器的能量為 GMm/R, 相當於把航天器加速到 v=(2GM/R)1/2≈11.2 公里/秒 的速度。 這個速度被稱為 「第二宇宙速度」, 有時也被稱為擺脫地球引力束縛所需的速度, 它也是一個等價速度。

倘若我們想把航天器發射得更遠些, 比方說發射到太陽系之外 - 就象本系列的 序言 中提到的 「先驅者號」 探測器一樣 - 火箭需要達到的速度又是多少呢? 這個問題比前兩個問題要復雜些, 因為其中涉及的有地球與太陽兩個星球的引力場, 以及地球本身的運動。 從太陽引力場的角度看, 這個問題所問的是在地球軌道所在處、 相對於太陽的 「第二宇宙速度」, 即: v=(2GMS/RS-E)1/2 (其中 MS 為太陽質量, RS-E 為太陽與地球之間的距離)。 這一速度大約為 42.1 公里/秒。 相對與第一、 第二宇宙速度來說, 這是一個很大的速度。 但是幸運的是, 我們的地球本身就是一艘巨大的 「宇宙飛船」, 它環繞太陽飛行的速度大約是 29.8 公里/秒。 因此如果航天器是沿著地球軌道運動的方向發射的, 那麼在遠離地球時它相對於地球只要有 v』 = 12.3 公里/秒 的速度就行了。 在地心參照系中, 發射這樣的一個航天器所需要的能量為 mv』2/2 + GMm/R (其中後一項為克服地球引力場所需要的能量, 即把航天器加速到第二宇宙速度所需要的能量), 相當於把航天器加速到 v≈16.7 公里/秒 的速度。 這一速度被稱為 「第三宇宙速度」, 有時也被稱為擺脫太陽引力束縛所需要的速度, 它同樣也是一個等價速度, 而且還是針對在地球上沿地球軌道運動方向發射航天器這一特殊情形的。

以上三個 「宇宙速度」 就是迄今為止火箭技術所跨越的三個階梯。 在關於 「第三宇宙速度」 的討論中我們看到, 行星本身的軌道運動速度對於把航天器發射到遙遠的行星際及恆星際空間是很有幫助的。 這種幫助不僅在發射時可以大大減少發射所需的能量, 而且對於飛行中的航天器來說, 倘若巧妙地安排航線, 也可以起到 「借力飛行」 的作用, 比如 「旅行者號」 就曾利用木星的引力場及軌道運動速度來加速。

三. 齊奧爾科夫斯基公式

在上節中我們討論了為發射不同類型的航天器, 火箭所要達到的速度。 與火箭之前的各種技術相比, 這種速度是很高的。 在早期的科幻小說中, 人們曾設想過用所謂的 「超級大炮」 來發射載人航天器。 其中最著名的是法國科幻小說家凡爾納 (J. G. Verne 1828-1905) 的作品。 凡爾納在他的小說 ?從地球到月球? (?From the Earth to the Moon? 1866) 中曾經讓三位宇航員擠在一枚與 「神舟號」 的軌道艙差不多大的特製的炮彈中, 用一門炮管長達 900 英尺 (約 300 米) 的超級大炮發射到月球上去 (最終沒能擊中月球, 而成為了環繞月球運動的衛星)。 但是凡爾納雖然有非凡的想像力, 卻缺乏必要的物理學及生理學知識。 他所設想的超級大炮若真的在 300 米的炮管內把 「炮彈」 加速到 11.2 公里/秒 (第二宇宙速度), 則 「炮彈」 的平均加速度必須達到 200000 米/秒2 以上, 也就是 20000g (g≈9.8米/秒2 為地球表面的引力加速度) 以上。 但是脆弱的人類肌體所能承受的最大加速度只有不到 10g。 這兩者的差距無疑是災難性的, 因此凡爾納的炮彈雖然製作精緻, 乘坐起來卻一點也不會舒適。 不僅不會舒適, 且有性命之虞, 事實上英勇的宇航員們在 「炮彈」 出膛時早就變成了肉餅, 炮彈最後有沒有擊中月球對他們都已經不再重要了。 倘若炮彈真的擊中月球的話, 其著陸方式屬於所謂的 「硬著陸」, 就象隕石撞擊地球一樣, 著陸時的速度差不多就是月球上的第二宇宙速度 (2.4 公里/秒), 相當於在地球上從比珠穆朗瑪峰還高 30 倍的山峰上摔到地面, 這無異是要把肉餅進一步摔成肉漿。

因此對於發射航天器 (尤其是載人航天器) 來說, 很重要的一點就是航天器的加速過程必須發生在一個較長的時間里 (減速過程也一樣)。 但是加速過程持續的時間越長, 在加速過程中航天器所飛行的距離也就越大。 以凡爾納的超級大炮為例, 倘若炮彈的加速度小於 10g, 則加速過程必須持續 100 秒以上, 在這段時間內炮彈飛行的距離在 500 公里 以上。 炮彈的加速度越小, 這段距離就越大。 由於炮彈本身沒有動力, 因此這段距離必須都在炮管內。 這就是說, 凡爾納超級大炮的炮管起碼要有 500 公里長! 建造這樣規模的大炮顯然是很困難的, 別說凡爾納時代的技術無法辦到, 即使在今天也是申請不到經費的。 因此航天器的發射必須另闢奚徑[注七]。 火箭便是一種與凡爾納大炮完全不同但卻非常有效的技術手段。

火箭是一種利用反沖現象推進的飛行器, 即通過向與飛行相反的方向噴射物質而前進的飛行器。 從物理學上講這種飛行器所利用的是動量守恆定律。 下面我們就來簡單地分析一下火箭的飛行動力學。

假設火箭單位時間內噴射的物質質量為 -dm/dt (m 為火箭質量, dm/dt<0), 噴射物相對於火箭的速度大小為 u (方向與火箭飛行方向相反), 則在時間間隔 dt 內, 火箭的速度會因為噴射而得到一個增量 dv。 依據動量守恆定律, 在火箭參照系中我們得到:

mdv = -udm

對上式積分並注意到火箭的初速度為零便可得:

v = u ln(mi/mf)

其中 mi 與 mf 分別為火箭的初始質量及推進過程完成後的質量 (顯然 mi>mf)。 這一公式被稱為齊奧爾科夫斯基公式, 它是由上文提到的俄國科學家齊奧爾科夫斯基發現的, 那是在 1897 年, 那時候的天空還是一片寧靜, 連飛機都還沒有上天。 齊奧爾科夫斯基因為在航天領域中的一系列卓越的開創性工作而被許多人尊稱為 「航天之父」。

從齊奧爾科夫斯基公式中我們可以看到, 火箭所能達到的速度可以遠遠地高於噴射物的噴射速度。 這一點是很重要的, 因為這意味著我們可以通過一種較低的噴射速度來達到航天器所需要的高速度, 這在技術上遠比直接達到高速度容易得多。 從某種意義上講, 凡爾納的超級大炮之所以沒能成為一種成功的載人航天器的發射裝置, 正是因為它試圖直接達到航天器所需要的高速度。

但是火箭雖然能夠達到遠比噴射物噴射速度更高的速度, 為此所付出的代價卻也不小, 火箭所要達到的速度越高, 它的有效載荷就越小。 這一點從齊奧爾科夫斯基公式中可以很容易地看到。 我們可以把公式改寫為: mf = mi exp(-v/u), 由此可見, 火箭的飛行速度 v 越高, 它的有效載荷 (mf 中的一部分) 也就越小。 假如我們想用 v=1 公里/秒 的噴射速度來達到第一宇宙速度 (即將有效載荷送入近地軌道), 則 mf/mi≈0.00037, 也就是說一枚發射質量為一千噸的火箭只能讓幾百公斤的有效載荷達到第一宇宙速度, 這樣的效率顯然是太低下了。

為了克服這一困難, 齊奧爾科夫斯基提出了多級火箭的設想。 多級火箭的好處是在每一級的燃料用盡後可以把該級的外殼拋棄, 從而減輕下一級所負載的質量。 在理論上, 火箭的級數越多, 運載效率就越高, 不過在實際上, 超過三級的火箭其技術復雜性的增加超過了運載效率方面的優勢, 運用起來得不償失。 因此目前我們使用的火箭大都是三級火箭。 即便使用多級火箭, 航天飛行的消耗仍是驚人的, 通常一枚發射質量為幾百噸的火箭只能將幾噸的有效載荷送入近地軌道 (比如發射 「神舟號」 飛船的長征二號 F 型火箭發射質量約為 480 噸, 近地軌道的有效載荷約為 8 噸)。

四. 接近光速

前面說過, 這個星際旅行系列主要是為了討論未來的星際旅行技術而寫的, 因此在這里我們也要把目光放遠些, 看看上節討論的火箭動力學在火箭速度持續提高, 乃至接近光速時會如何。 到目前為止人類發射的航天器中飛得最遠的已經飛到了冥王星軌道之外。 冥王星自 1930 年被發現以來, 就一直是太陽系中已知的離太陽最遠的行星。 在那之外是一片冰冷廣袤的空間。 人類要想走得更遠, 必須要有更快的航天器。 在齊奧爾科夫斯基公式中火箭的速度是沒有上限的, 通過提高噴射物的噴射速度, 通過增加火箭質量中噴射物所佔的比例, 火箭在原則上可以達到任意高的速度。 這一點顯然是錯誤的, 因為物體的運動速度不可能超過光速, 這是相對論的要求[注八]。因此當火箭運動速度接近光速時, 齊奧爾科夫斯基公式不再成立。 那麼有沒有一個比齊奧爾科夫斯基公式更普遍的公式, 在火箭運動速度接近光速時仍成立呢? 這就是本節所要討論的問題。

首先, 簡單的答案是: 這樣的公式是存在的。 事實上, 這樣的公式不僅存在, 而且並不復雜, 因此我們乾脆在這里把它推導出來, 以滿足大家的好奇心。 這一推導所依據的基本原理仍然是動量守恆定律, 我們也仍然在火箭參照系中計算火箭速度的增量。 這里要說明的是, 所謂火箭參照系, 指的是所考慮的瞬間與火箭具有同樣運動速度的慣性參照系 (因此在不同的時刻, 火箭參照系是不同的)。 我們用帶撇的符號表示火箭參照系中的物理量 (這是討論相對論問題的慣例)。 與上一節的討論相仿, 假設火箭單位時間內噴射的物質質量為 -dm』/dt』 (m』 為火箭質量, dm』/dt』<0), 噴射物相對於火箭的速度大小為 u (方向與火箭飛行方向相反), 則在一個時間間隔 dt』 內, 火箭的速度會因為噴射而得到一個增量 dv』。 依據動量守恆定律, 在火箭參照系中我們得到:

m』dv』 = -udm』

這里 dm』 為噴射物的相對論質量 (運動質量), 這一公式對於 u 接近甚至等於光速的情形也成立[注九]。在非相對論的情形下, 上面所有帶撇的物理量都等於靜止參照系 (地心參照系) 中的物理量, 因此對上述公式可以直接積分, 這種積分的含義是對上式中的速度增量進行累加。 但在相對論中, 速度合成的規律是非線性的, 把這些在不同時刻 - 因而在不同參照系中 - 計算出的速度增量直接相加是沒有意義的, 因此上述速度增量必須先換算到靜止參照系中才能積分。

運用相對論的速度合成公式, dv』 所對應的靜止系中的速度增量為:

dv = (dv』 + v)/(1 + vdv』/c2) - v = (1 - v2/c2)dv』

將這一結果與在火箭參照系中所得的關於 dv』 的公式聯立可得:

dv / (1 - v2/c2) = -u dm』/m』

對這一公式積分, 並進行簡單處理, 便得:

v = c tanh[(u/c) ln(mi/mf)]

其中 mi 與 mf 是在火箭參照系中測量的。這就是齊奧爾科夫斯基公式在相對論條件下的推廣。 對於低速運動的火箭, (u/c) ln(mi/mf) << 1, 因而 tanh[(u/c) ln(mi/mf)]≈(u/c) ln(mi/mf), 上述公式退化為齊奧爾科夫斯基公式。 由於對於任意 x, tanh(x) < 1, 因此由上述公式給出的速度在任何情況下都不會超過光速。

上述公式的一個特例是 u=c 的情形, 即噴射物為光子 (或其它無質量粒子) 的情形。 這種火箭常常出現在科幻小說中, 通常是以物質與反物質的湮滅作為動力來源。 對於這種情形, 上述公式簡化為: v = c(mi2 - mf2)/(mi2 + mf2)。 如果將火箭 90% 的物質轉化為能量作為動力, 火箭的飛行速度可以達到光速的 99%。

五. 飛向深空

宇宙的浩瀚是星際旅行家們面臨的最基本的事實。 即使能夠達到接近光速的速度, 飛越恆星際空間所需的時間仍然是極其漫長的。 從太陽系出發, 到銀河系中心大約要飛 3 萬年, 到仙女座星雲 (M31 - 河外星系) 大約要飛 220 萬年, 到室女座星系團 (Virgo - 河外星系團) 大約要飛 6000 萬年 ... ... 相對於人類彈指一瞬的短暫生命來說這些時間顯然是太漫長了。 但是且慢悲觀, 因為我們還有一個因素可以依賴, 那就是相對論的時鍾延緩效應。 在相對論中運動參照系中的時間流逝由所謂的 「本徵時間」 來表示, 它與靜止參照系中的時間之間的關系為:

τ = ∫ (1 - v2/c2)1/2 dt

把這個公式用到火箭參照系中, τ 就是宇航員所感受到的時間流逝。 很顯然, 火箭的速度越接近光速, 宇航員所感受到的時間流逝也就越緩慢。 考慮到這個因素, 宇航員是不是有可能在自己的有生之年到銀河系中心、 仙女座星雲、 甚至室女座星系團去旅行呢? 下面我們就來計算一下。

我們考慮一個非常簡單的情形, 即火箭始終處於勻加速過程中。 當然這個勻加速度是在火箭參照系中測量的。 為了讓宇航員有賓至如歸的感覺, 我們把加速度選為與地球表面的重力加速度一樣, 即 g。 用數學語言表示:

d2x』/dt』2 = g

把這一加速度變換到靜止參照系 (地心參照系) 中可得:

d2x/dt2 = (1 - v2/c2)3/2g

由此積分可得:

x = (c2/g) [(1 + g2t2/c2)1/2 - 1]

只要加速的時間足夠長 (gt>>c), 上式可以近似為 x≈ct。 這表明在地心參照系中, 經過長時間加速後飛船基本上是以光速飛行的。 但是我們感興趣的是宇航員所經歷的時間, 即 「本徵時間」 τ, 這是很容易利用上式 - 即 τ 的定義 - 計算出的, 結果為:

τ = (c/g) sinh-1(gt/c)

我們可以從 τ 和 x 的表達式中消去 t, 由此得到:

τ = (c/g) sinh-1{[(1 + gx/c2)2 - 1]1/2}

如果 x<<c2/g≈1 光年, 即飛行距離遠小於一光年, 上式可以近似為: τ≈(2x/g)1/2, 這正是我們熟悉的非相對論勻加速運動的公式。 如果 x>>c2/g≈1 光年, 即飛行距離遠大於一光年, 上式可以近似為: τ≈(c/g) ln(2gx/c2), 下面我們只考慮這種情形。 考慮到到達一個目的地通常還需要考察研究、 拍照留念, 因此火箭不能一味加速, 而必須在航程的後半段進行減速, 從而旅行所需的時間應當修正為:

τ ≈ (2c/g) ln(gx/c2) ~ (2 年) ln(x/光年)

倘若旅行的目的地是銀河系的中心, x=30000 光年, 由上式可得 τ~ 20 年。 這就是說, 在宇航員看來, 僅僅 20 年的時間, 他就可以到達銀河系的中心, 即使考慮到返航的時間, 前後也只要 40 年的時間, 他就可以衣錦還鄉了。 這就是相對論的奇妙結論! 只不過, 當他回到地球時, 地球上的日歷已經翻過了整整 6 萬年, 他的孫子的孫子的孫子 ... ... (如果有的話) 都早已長眠於地下、 墓草久宿了。

運用同樣的公式, 我們可以計算出到達仙女座星雲所需的時間約為 29 年; 到達室女座星系團所需的時間約為 36 年; ... ... (在這里讀者們對於對數函數增長之緩慢大概會有一個深刻的印象吧)。 倘若一個宇航員 20 歲時坐上火箭出發, 如果他可以活到 80 歲, 那麼在他的有生之年 (不考慮返航 - 壯士一去兮不復返), 他可以到達 10000000000000 (十萬億) 光年遠的地方。 這個距離已經遠遠遠遠地超過了可觀測宇宙的線度, 因此這樣的一位宇航員在有生之年可以到達宇宙中任意遠的地方!

這樣看來, 星際旅行似乎並不象人們渲染的那樣困難。 如果是那樣, 我們也就不必費心討論什麼 Wormhole 和 Transporter 了, 直接坐上火箭遨遊太空就是了。 事情當然不會如此簡單, 別忘了在我們的計算中火箭是一直在加速的 (否則的話, 那個幫了我們大忙的對數函數就會消失), 這樣的火箭耗費的能量是驚人的 (究竟要耗費多少能量呢? 運用本文給出的結果, 讀者可以自己試著計算一下)。 不過這種能量耗費所帶來的工程學上的困難比起建造 Wormhole 所面臨的困難來終究還是要小得多。 因此運用這樣的火箭探索深空也許真的會成為未來星際旅行家們的選擇。唯一的遺憾是, 他們只要走得稍遠一點, 我們就沒法分享他們的旅行見聞了。

因為相對論只保佑他們, 不保佑我們。

--------------------------------------------------------------------------------

注釋

[注一] 大氣層與行星際空間是連續銜接的, 所謂 「穿過大氣層」 指的是穿過厚度在百餘公里以內的稠密大氣層。

[注二] 當然, 這里我們要忽略空氣阻力, 並且還要忽略地球表面的地形起伏。

[注三] 這里我們: 1. 用衛星一詞指那些環繞地球運動的物體, 這些物體的軌跡是局限在有限區域中的 (否則的話可能的軌跡還包括拋物線與雙曲線)。 2. 假定地球的引力場是一個嚴格的平方反比中心力場。 3. 忽略任何其它星體的引力場。

[注四] 確切地講是指速度的大小, 下文提到的 「向心力」、 「引力」 等也往往指的是大小, 請讀者自行判斷其含義。

[注五] 這里參照系取在地心, 我們忽略由地球自轉所導致的衛星動能 (忽略所造成的誤差小於 1%)。

[注六] 確切地講是忽略太陽引力場中引力勢能的變化。 在這一限制之下其它行星的引力場也同樣可以忽略。

[注七] 類似於凡爾納大炮那樣的裝置在表面引力較弱的星球 - 比如月球 - 上建造起來就會容易許多, 因此有人設想它可以成為未來月球基地的航天器發射裝置。

[注八] 在理論與實驗上都有跡象表明, 在特定的條件及特定的含義下, 運動速度超過光速不是絕對不可能的, 但是這種超光速並不象許多科普愛好者所認為的那樣, 是推翻了相對論。 關於這一點, 以後有時間再作專門的介紹。

[注九] 假如 u 等於光速, 則 dm』 理解為 dE』/c2 (E』 為噴射物的能量)。

作者:盧昌海 二零零三年十月十四日寫於紐約

責任編輯:中國航天工程咨詢中心_侯丹

熱點內容
2018小說排行榜新御宅屋 發布:2025-02-12 01:01:49 瀏覽:134
古代小說女主是秦若曦男主是皇帝 發布:2025-02-12 00:55:15 瀏覽:909
古代穿越小說封面素材 發布:2025-02-12 00:52:48 瀏覽:623
小甜心小說排行榜 發布:2025-02-12 00:40:02 瀏覽:48
網路小說芧山 發布:2025-02-12 00:18:17 瀏覽:507
租借女友小說水原千鶴免費 發布:2025-02-12 00:10:29 瀏覽:534
重新開始小說閱讀 發布:2025-02-12 00:09:29 瀏覽:901
言情小說男主姓赫連 發布:2025-02-11 23:52:39 瀏覽:126
哪個小說網站里寫小說可以在QQ閱讀裡面看到 發布:2025-02-11 23:51:53 瀏覽:413
有哪些經典的都市言情小說 發布:2025-02-11 23:50:38 瀏覽:942